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action-corrected (SIC) density functionals; optimization of hybrid MCDFT methods;
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along with MCDFT results for computation of chemical properties. Our Phase I results
are highly encouraging, demonstrating the MCDFT approaches are camable of signific- -
antly improved accuracy as compared to current DFT functionals. The N3 or better
scaling with basis set size for PS-GVB's methods resulting from its use of the

14 SUBIIIT TihA. . 15. NURAEER Or PAGES
f
{16, PRIZI CODE
? H
17. SELUF 17 _ ASyrilATION Jie SECURITY CLASSIFICATION |19 SECURITY CLASSIFIZATION . 20. LIVGTATIGN UF ABSTRALCT
Q& REDOET OF TH!S PAGE OF ABSTRACT : :
() (V) () i (UL




CONTINUE. F49620-96-C-0036

pseudospectral (PS) algorithm ensures that MCDFT is practical for reasonable-sized
systems as well. Although considerable additional work will be required in Phase II
to implement fully self-consistent MCDFT methods, fund the optimum functional (or
functionals), improve computational efficiency, and define protocols for utilizing
GVB wavefunctions in a localized region of the molecule, the preliminary software

clearly demonstrates that the basic multiconfigurational density functional theory
is sound. ’ ' :
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STATUS OF EFFORT

The multiconfigurational density functional theory (MCDFT) software Schrodinger.
Inc. has developed in Phase I of this project combines many of the advantages of generalized
valence bond (GVB) and restricted configuration interaction (RCI) techniques with those of
DFT. We have explored several avenues for improving the implementation of MCDFT
methods and have incorporated the MCDFT code into a development version of our commer-
cially successful electronic structure program, PS-GVB [1].

The work we have performed in Phase I has centered upon these five tasks: parti-
tioning of the GVB two-electron energy into Coulomb, exchange, and intra-pair terms; coding
and developing GVB-RCI-DFT (post-SCF DFT on a GVB-RCI density); inclusion of self-
interaction-corrected (SIC) density functionals; optimization of hybrid MCDFT methods; and
generation of a preliminary version of fully self-consistent GVB-DFT. The procedure we
employed to accomplish each of these tasks is described in this report, along with MCDFT
results for computation of chemical properties.

Our Phase I results are highly encouraging, demonstrating that MCDFT approaches
are capable of significantly improved accuracy as compared to current DFT functionals. The
N? or better scaling with basis set size for PS-GVB’s methods resulting from its use of the
pseudospectral (PS) algorithm ensures that MCDFT is practical for reasonable-sized systems
as well. Although considerable additional work will be required in Phase II to implement fully
self-consistent MCDFT methods, find the optimum functional (or functionals), improve
computational efficiency, and define protocols for utilizing GVB wavefunctions in a localized
region of the molecule, the preliminary software clearly demonstrates that the basic multicon-
figurational density functional theory is sound.

ACCOMPLISHMENTS AND NEW FINDINGS

A. Summary of MCDFT Methods

The theoretical approach for MCDFT methods originates with a GVB or GVB-RCI
wavefunction, which adequately represents the static correlation effects necessary to obtain
the correct features of a potential surface, such as left-right correlation and proper spin
coupling. In the GVB approach, each bond or other electron pair is described by two non-
orthogonal orbitals, whose contributions to the bond description are obtained variationally.
Because PS-GVB has a high-quality automated initial guess for the wavefunction [2] and fast,
reliable convergence algorithms [3], its GVB module is both highly efficient and straightfor-
ward to use. The GVB-RCI program within PS-GVB generates a correlated wavefunction
from intra-pair excitations of the GVB reference wavefunction, using a highly effective
contraction procedure to reduce the length of the CI expansions [4]. The program employs the
pseudospectral method to speed up integral evaluation by reducing the scaling of the evalua-
tion of each Coulomb or exchange operator in basis function space from N* to N3, and solving
for the necessary matrix elements with a fast two-index transform rather than the expensive
four-index transform required in traditional ab initio codes. The program also systematically
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includes only the most important configurations to make the calculation more practical, with
minimal loss of accuracy relative to the fully uncontracted expansion. The internal contraction
scheme used restricts the number of CI coefficients in the RCI calculation to ~n>, where n is
the number of GVB pairs, yet is in excellent agreement with a fully uncontracted CI which
would contain 2"n? CI coefficients (the number of uncontracted determinants).

To add dynamic correlation energy, E,, one can simply use the GVB or GVB-RCI
charge density in DFT correlation functionals or, as a more sophisticated approach, in hybrid
DFT methods, which include both GVB or GVB-RCI “exact” exchange and density func-
tionals representing exchange as well as correlation functionals. As a modification to Becke’s
theory [5] of hybrid density functional methods, we have also experimented with scaling an
intra-pair GVB term (described below) as well as scaling the DFT exchange energy E V-7
and the non-local contribution to the correlation energy E VPA. During Phase I, we have
generated some preliminary results for the hybrid parameters and the parametrized energy
partitioning required for these methods. We have also begun to implement a self-consistent
version of GVB-DFT, as detailed in Section F.

Multiconfigurational density functional theory leads to improved accuracy at quite
reasonable computational costs, and it can be expected to be particularly useful for various
problems that are not easily studied with standard ab initio and density functional methods.
For instance, transition metal chemistry is known to have large multireference effects, which
may explain the marginal performance of DFT on these systems [6]. The use of an MCSCF
reference also allows one to treat a number of electronic systems in which more than one
determinantal wavefunction is required even in zeroth order. For example, symmetry and spin
cigenstates of many of the states of a system as simple as O, require a multideterminental
expansion which cannot be obtained within the context of traditional density functional
theory. Transition states of so-called “symmetry forbidden” reactions or the calculation of
potential curves near avoided crossings involves mixing of several determinantal functions
which again cannot be represented by density functional theory alone.

B. Partitioning of the GVB Two-Electron Energy into Coulomb,
Exchange, and Intra-Pair Terms

The key to the performance of our MCSCF-DFT methods largely lies in the ability of
the ab initio method to robustly describe dominant static correlation effects and the excellent
scaling of the combined methods with basis set size. Therefore, as part of our implementation
of self-consistent MCDFT methods, we have performed some of the work necessary to
improve the treatment of the GVB reference wavefunction.

The partitioning of the two-electron energy into Coulomb and exchange components
is not so uniquely defined for GVB or GVB-RCI wavefunctions as it is for Hartree-Fock, and
in course of our Phase I work we considered different possible schemes. The issue is moot, of
course, for purely “exact-exchange” methods, where the DFT correlation energy for the final
GVB-RClI density is simply added to the complete final GVB-RCI energy. However, to design
an accurate hybrid GVB-DFT method, in which exchange and correlation contributions from
both GVB and DFT are scaled and combined, it is quite important that physically related
terms are first identified in the GVB and DFT energy expressions.




Since the classical Coulomb energy of the electron density can be unambiguously
defined in both the GVB and DFT approaches, it is natural to separate this from the remaining
(nonclassical) exchange-correlation contributions to the two-electron energy; this is the
normal approach in DFT theory, but not in MCSCF methods like GVB. The GVB energy can
be rewritten so that interactions between the orbitals of a given GVB pair and all other orbitals
are described by “mean-field” Coulomb and exchange operators, J, . and K|, . The mean-field
Coulomb operator thus defined corresponds to the Coulomb operator of DFT theory. The
expectation values for these operators are the classical Coulomb and mean-field exchange

energies
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where i and j run over all occupied orbitals and f; is the occupation number of orbital i. For
closed-shell systems, the remaining two-electron energy consists entirely of terms local to
each GVB pair, and the sum of these is the intra-pair “exchange” energy, K evi?
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where C,,, and C, are the CI coefficients for the natural orbitals Py and @ b of GVB pair p. It
is important to remember that K, , also describes the couelanon energy of the GVB wave-

function.

gvh

With these definitions, the complete energy expression for the general open-shell
(high-spin) GVB wavefunction is

EGVB=E +7T+J +K +K ,+K

nuc mf nf avh open

where K open CONtAINS remaining non-mean-field exchange interactions among the open-shell
orbitals. The complete exchange-correlation energy of the GVB wavefunction is therefore K nf
+ K avb T Kypen- FOI the purpose of comparing with the DFT energy expression, K+ K open
corresponds roughly to the Hartree-Fock exchange energy, while K v CONtains components of

both exchange and correlation.

To reiterate, the point of separating the non-Coulomb part of the two-electron energy
in this manner is to try to isolate the exchange-like and correlation-like components of the
GVB energy, so that effective hybrid methods can be defined that minimize the double-
counting of exchange and correlation when DFT functionals are introduced. The aforemen-
tioned scheme represents just one possible separation. In fact, the parameterization results
obtained in Phase I, while quite good, often demanded that the Kmf and K v COMponents be




scaled almost equally; this indicates to us that the K pand Ko, defined here may not be phys-
ically independent and that a different separation may provide more flexibility. For instance,
there are still intra-pair exchange terms K, in K, that can be moved into K ovp We will

examine the effect of this and other partitionings in Phase II.

C. Post-SCF DFT on a GVB-RCI Density

During Phase I, we implemented GVB-RCI-DFT within PS-GVB, an effort that
required computing RCI densities for a post-SCF DFT analysis. Preliminary results for post-
SCF correlation-only DFT treatments showed a fairly low average error of 5.9 kcal/mol in
predictions of experimental atomization energies of closed-shell systems.

We have also used the GVB-RCI-DFT software to evaluate conformational energies
calculated by performing a post-SCF DFT analysis on the RCI density using various local
correlation functionals. Table 1 lists the results we have obtained thus far and compares them
with values obtained using GVB-RCI alone. In most cases the DFT correction results is an
improvement of the RCI reference value. Given that we have not parametrized the RCI
exchange and had not yet included self-interaction corrections, these results suggest that the
RCI-DFT method is sound.

In Table 2, we present timings for GVB-RCI-DFT calculations on systems with up to
287 basis functions and 21 GVB pairs, using a cc-pVTZ(-f) basis set. To expedite the GVB
calculations, we first converged 6-31G** wavefunctions, then used those as initial guesses for
the cc-pVTZ GVB runs. The GVB calculation is clearly the rate-limiting factor of these calcu-

lations; this effect will be mitigated by our strategies to optimize GVB performance in Phase
I1.

The overall scaling of the GVB-RCI-DFT method is N,zu?: , which is far superior to any
other common MCSCF procedure such as CASSCEF. Given these timings, routine application
of GVB-RCI-DFT to systems with on the order of 500 basis functions and 40 GVB pairs (80
correlated electrons) is feasible on workstations with reasonable throughput. Furthermore, not
all GVB pairs need to be included in a given problem, an advantage which further extends the

range of applicability of these methods.

We are continuing to address the issue of partitioning the GVB-RCI exchange term
into mean field and intra-pair contributions in order to extract the analogue of the intra-pair
GVB term described in Section B. Although the RCI energy expression is considerably more
complicated than the GVB expression, the energy can be partitioned into Coulomb and
exchange terms as well as intra- and inter-pair terms. We anticipate that for best results with
hybrid methods, we will then need to scale this intra-pair RCI term, as we did for GVB-DFT.

D. Correlation Functional Modifications

We have found, as have others [7, 8, 9], that a correlation correction calculated with
standard DFT correlation functionals using the GVB density leads to an over-correction of the
correlation energy. For example, an atomization calculation of C,H, has a GVB value of




Molecule RCI | RCI-VWN | RCI-VWNS | RCI-PZ81 | Exp.
cyclohexanol 1.04 0.93 0.49 0.47 0.52
piperidine 0.86 0.87 0.87 0.87 0.40
2,3-dimethylbutane 0.03 0.04 0.03 0.03 0.17
N-methylformamide 0.97 1.10 1.09 1.08 1.45
butane 1.16 0.97 1.00 1.00 0.75

methyl acetate 8.61 8.71 8.73 8.71 7.5-8.5
methyl ethyl ether 1.71 1.55 1.58 1.58 1.50
acrolein 1.82 1.73 1.75 1.75 2.00
isopropylamine 0.31 .43 0.41 0.41 0.45
propionaldehyde 0.64 0.83 0.80 0.80 0.95
methyl formate 4.97 5.36 5.31 5.30 4.75
ethyl ether 1.87 1.53 1.60 1.60 1.10
1-butene 0.72 041 0.45 0.45 0.53
2-butene 1.89 1.68 1.72 1.71 1.00
butanone 1.09 1.27 1.24 1.24 1.15
1,3-butadiene 2.49 2.45 247 2.46 2.49
methyl vinyl ether 0.38 0.81 0.75 0.75 1.15
cyclohexamine 1.42 0.76 0.89 0.89 1.10

Table 1: Conformational energies in kcal/mol, evaluated with GVB-RCI only (RCI) and by
performing a post-SCF DFT analysis of the GVB-RCI self-consistent wavefunction using
various local correlation functionals.

Molecule Npas Npair 6-31G** | cc-pVTZ | RCI Int. | RCI Energy | DFT | Total
Methylcyclohexane | 287 21 76 550 110 6 142 884
Cyclohexane 246 18 43 340 68 3 86 540
Methylvinylether | 146 | 12 12 83 10 0.5 13 119

Table 2: CPU times (minutes) for pseudospectral GVB initial wavefunction calculations with the
6-31G** basis and with the cc-pVTZ(-f) basis using the 6-31G** results as initial guesses, RCI
integral generation, RCI energy solver, and DFT correlation energy treatment of the GVB-RCI
density. All calculations performed on a single IBM-SP2 390 thin node.
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461.4 kcal/mol and a VWN correlation functional corrected value of 581.1 kcal/mol, in
comparison to the correct atomization energy of 531.9 kcal/ mol.

There are two established methods for dealing with this over-correlation that need to
be implemented and tested within the GVB-DFT and GVB-RCI-DFT formalisms: modifying
the spin part of the density interactions, and modifying the total spin-space density that enter
into the correlation functionals. Although we originally slated work on both of these methods
for Phase II, we have partially completed programming and testing one of these approaches.
the inclusion of “self-interaction-corrected” (SIC) functionals [7, 10] within the code. These
functionals assume that the dominant correlation effect is between electrons of opposite spins
and thus subtract out the correlation from like spins, writing the DFT correlation correction to
the energy E, as:

E. = [drp(r)e (pg (1), pp (1] = [drp, (e, [p, (1), 01 = [drpy (1) €, [0, pg ()]

where p, and pg denote the oot and PP parts of the total spin density p = p, + pg and
e Py (D), pB(r)] is a standard correlation functional. This approach could be further parame-
trized by scaling (with a factor of O to 1) the part of the self-interaction which is subtracted in
the above equation. Note that without the SIC correction, the H atom has an unphysical non-
zero DFT correlation energy. Part of the rationale for this approach is that the treatment of ab
initio (HF or GVB) exchange interactions is providing for a large fraction of the oo, B corre-
lations and hence this correlation should be removed from E, as above.

Some preliminary results for atomization energy calculations generated using the new
SIC code are included in Section E.2 below. In Phase 11, we will continue to study the perfor-
mance of such SIC modifications for various correlation functionals and in conjunction with
the exchange scaling schemes discussed in Section E.

E. Optimization of Hybrid MCDFT Methods

E.1. Conformational Energy Calculations

The “three parameter” method that was developed by Becke [5] and is now widely
used for density functional theory calculations was designed to give good self-consistent DFT
results by combining optimal amounts of “exact” Hartree-Fock and density functional terms.
The parameters were chosen by performing least-squares fitting to obtain the values that
yielded the best results for chemical properties of several dozen molecules. Popular hybrid
methods that use these three parameters include B3LYP.

Because Becke’s parametrization was designed to allow the DFT treatment to account
for effects neglected by Hartree-Fock, we did not expect the parameters to be ideal for post-
SCF DFT analysis of GVB wavefunctions or for self-consistent GVB-DFT. In Phase I, we
performed a preliminary analysis of what these parameters should be to give best results for
GVB-DFT and found that re-fitting the parameters gave a dramatic improvement for post-
SCF DFT calculations on GVB wavefunctions, regardless of the local and non-local correla-
tion functionals used.




Our preliminary GVB-DFT parametrization was designed to minimize RMS errors for
a set of 17 conformational energy differences, where the cases and their experimental values
were drawn from among papers concerning calculation of relative conformational energies by
Murphy et al. [11] and St.-Amant et al. [12]. The conformational energy calculations were
performed with our electronic structure software, PS-GVB, using a cc-pVTZ(-f) basis set, an
energy convergence criterion of 1.0x 10® Hartrees, and PS-GVB’s highest-accuracy setting.
The DFT exchange-correlation energy was calculated non-self-consistently using the self-
consistent GVB density; all GVB calculations included all possible sigma and pi bond pairs.

The RMS error obtained for pure GVB conformational energy differences, 0.43 kcal/
mol, was considerably lower than the HF or B3LYP RMS errors of 0.52 and 0.54 kcal/mol,
and including a treatment of the GVB densities with correlation functionals yields markedly
improved RMS errors (0.32 kcal/mol for GVB-LYP, for instance, an improvement of more
than 30% over the pure HF or B3LYP results). However, applying the hybrid DFT method
B3LYP to the GVB densities gave a quite poor RMS error of 0.56 kcal/mol. Clearly the
weights assigned to various terms by Becke’s three parameters were unsuitable for our GVB-
DFT conformational energy calculations.

Results of our Phase I parametrization of GVB-DFT hybrid methods are summarized
in Table 3. We first performed a completely unrestricted parameter fit to minimize the RMS
error, analyzing coefficients for every GVB and DFT term, with no restrictions on the range of
the coefficients. During this fit, we allowed the coefficients for the exact exchange terms K,

and K avb (described in Section B) to vary separately. As we expected and as Table 4 shows,
the resultant coefficients were totally unphysical. but this fitting gave us an idea of the best
result we could possibly expect for an RMS conformational energy difference error for the
data set in question, using only GVB and post-SCF DFT terms: an RMS error of 0.23 kcal/
mol, considerably lower than the GVB and RMS error of 0.43 and less than half the B3LYP
error of 0.56. The terms from the local correlation functional using the GVB density are
clearly the most important for a good fit to experimental data. The unrestricted fit also makes
it clear that the Slater local exchange functional [13], whose coefficient is very small, is
“contributing nothing useful to the fit: the GVB exact exchange dominated the calculation of
exchange energy. Therefore, for the remaining fittings, we eliminated the Slater contribution.

Post-SCF DFT on GVB density
Pure SCF
Single functional Parametrized combination of functionals

[ <
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Error: | 043 1 0.54 | 0.33 | 0.32 | 0.34 | 0.56 | 0.23 | 0.30 [ 0.31 [ 0.31 [ 0.31 | 0.31 | 0.30 | 0.31

Table 3: RMS errors in kcal/mol for calculations of 17 conformational energy differences using
various SCF and post-SCF DFT methods. Coefficients used for parametrized combinations of
functionals are shown in Table 4 and Table 5.
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unrestricted || 13014 | 0.9530 | 02031 | -7.0147 | 104.19 | -116.42 | -2.6362 | 24.585 | 12.282
Kf=1 1.0000 | 0.9477 | 0.0000 | 0.5497 | 1.0000 | 0.7813 | 0.5628 | 0.5265 | 0.0000
m

Table 4: Coefficients for various terms for parameter fitting to reduce RMS errors for
conformational energy differences described in the text. The Km/=1 fit also restricted all other
coefficients to be between 0 and 1. "

When we constrained the K, - coefficient to unity and restricted the other coefficients
to be between 0 and 1, while still allowing all possible functionals to contribute, the RMS
error was 0.30, still much lower than GVB or B3LYP alone gave. However, as Table 4 shows,
the total coefficients for each type of exchange or correlation term were too high. In addition.
including a contribution from every functional available would be difficult to justify as a
general method.

Our next goal was to restrict the parameters to reasonable values and definitions
without significantly reducing the accuracy of the GVB-DFT results. We followed the model
provided by Becke’s three parameters, restricting the sum of the parameters for total exact
exchange and local exchange to 1 (in this case by including all of the GVB K, sexchange
energy and leaving out the Slater term), and ensuring that the parameters for local correlation
also summed to 1. Parameters for Becke’s 1988 gradient correction to the exchange [14] and
for a non-local correlation functional were allowed to vary between 0 and 1. (As usual, when
LYP was used as a non-local correlation functional, the local correlation functional’s contribu-
tion was reduced correspondingly to make up for the local correlation contribution of the LYP
functional.) We also introduced another parameter for the GVB intra-pair term K i Which s
described in detail in Section B. In summary. we were fitting for the a, 3, and y that would
give the lowest RMS energy error for energies of the form:

GVB-DFT _ GVB GVB GVB NLDA

+F

- “Coulomb xmf o intra —pair + BE\ [p (ngb) ’ Vp (Wg\'l)) ]
LDA NLDA

+E P (W )] +XE T 1P (W), VP ()]

E

while restricting all three parameters to be between 0 and 1. We optimized these parameters
for six different cases, where for each individual case, we chose either VWN [15] or PW-91
[16] as the local correlation functional and either LYP [17], Perdew 86 [18], or GGA-IIc [16]
as the non-local correlation functional.

Ideally, we wanted our results to be nearly as accurate as the 0.30 RMS error we had
obtained with the minimal constraints described above, and to remain relatively stable with
our choice of functional, particularly in regard to the local correlation functional, which is not
scaled by any variable parameter. We also felt the f parameter should be low, since the Becke
gradient correction is really meant to address the limitations of the Slater exchange functional
and should therefore be unnecessary when only the accurate GVB exchange is used instead.
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Finally, we wanted the GVB intra-pair scaling parameter to be consistent for the various func-
tional choices.

As Table 5 indicates, all of these conditions were met: the RMS error ranged from 0.30
to 0.31 kcal/mol over all six cases, the value obtained for  in every case was 0, and the value
for x was always 0.94. This preliminary work should provide a solid foundation for further

VWN/ PWI1/ VWN/ PW91/ VWN/ PWIV/
P86 P86 GGAllc GGAIlc LYP LYP
o 0.94 0.94 0.94 0.94 0.94 0.94
B 0.00 0.00 0.00 0.00 0.00 0.00
X 0.25 0.33 0.29 0.40 0.42 0.54
RMS Error 0.31 0.31 0.31 0.30 0.31 0.30
MA Error 0.24 0.24 0.24 0.23 0.23 0.23

Table 5: Parameters fitted for various combinations of functionals for post-SCF DFT
calculations, and the resultant RMS and mean absolute errors (in kcal/mol) for conformational
energy difference calculations. Parameters are described in the text.

parametrization efforts in Phase II.
E.2. Atomization Energy Calculations

Our Phase I calculations of GVB-DFT atomization energies for 44 molecules from the
G2 data set [19] further demonstrate the promise of MCDFT methods, although much work
still remains to be done in Phase II to optimize hybrid method parameters and other aspects of
GVB-DFT and GVB-RCI-DFT calculations. All of our preliminary atomization energy calcu-
lations described here used the cc-pVTZ(-f) basis set and PS-GVB’s highest accuracy setting,
starting with the standard initial-guess GVB wavefunction. For the first set of calculations
described here, those without self-interaction-corrected functionals, GVB pairs were defined
for all molecular bonds, but not lone pairs, while atoms were treated at the ROHF level; for
the calculations with self-interaction corrections, GVB lone pairs were also included.

We first evaluated the effects of various functionals in the post-SCF DFT treatment of
HF and GVB wavefunctions. The use of local and non-local DFT correlation functionals
uniformly gave a dramatic improvement over the straight HF and GVB atomization energies.
as 1s shown in Table 6. However, the unscaled inclusion of the Slater local exchange func-
tional and Becke non-local gradient correction to the exchange (BLYP, for example) actually
made the GVB-based results worse, although the HF-based atomization energies again
improved substantially. We did ultimately obtain higher quality results for the GVB-based
treatment when including DFT exchange functionals, but only by retaining some fraction of
the GVB exchange energy in hybrid methods or by using SIC functionals. Some of our results
for hybrid methods are included in Table 6 for comparison; the methods are explained in
detail below.




SCF DFT DFT DF’l: atomization
. correlation exchange hybrid energy
wavefunction functional(s) functional(s) | method error

v HF — — — 80.3
a GVB — — - 49.7
HF VWN (local) only — — 26.0
T‘: GVB VWN (local) only — — 23.7
Qg HF PWOI (local) only — —_— 28.6
§ GVB PWO1 (local) only — — 22.8
é HF GGA-II (non-local) only — — 25.2
§. HF LYP (non-local) only — —_ 25.6
E GVB GGA-II (non-local) only — — 17.2
GVB LYP (non-local) only —_ — 18.4
HF GGA-II (non-local) only GGA-II —_— 5.1
§° o HF LYP (non-local) only Slater/Becke —_ 5.3
E’ % HF VWN (local) / LYP (non-local) Slater/Becke B3LYP 5.0
é S GVB GGA-II (non-local) only GGA-II — 26.4
E < GVB LYP (non-local) only Slater/Becke — 30.7
GVB VWN (local) / LYP (non-local) Slater/Becke B3LYP 19.8
GVB VWN (local) / Perdew86 (non-local) Slater/Becke new 4.06
= é‘» GVB PWO91 (local) / Perdew 86 (non-local) | Slater/Becke new 4.11
E % GVB VWN (local) / GGA-IIc (non-local) Slater/Becke new 3.36
%': ‘é GVB PWOI (local) / GGA-IIc (non-local) Slater/Becke new 3.73
:E § GVB VWN (local) / LYP (non-local) Slater/Becke new 3.45
GVB PWO1 (local) / LYP (non-local) Slater/Becke new 3.36

Table 6: Full comparison of mean absolute errors (in kcal/mol)

for atomization energy

calculations on 50 molecules from the G2 data set using various ab initio methods. All DFT
calculations were post-SCF treatments of the DFT energy using the density from the given self-
consistent wavefunction. New hybrid methods are explained later in this section. Entries of —

mean no, none, or not relevant.

Hybrid methods we considered contained various proportions of the GVB mean-field
exchange energy, the GVB intra-pair energy, the Slater local exchange functional, the Becke
non-local exchange functional, the VWN and Perdew-Wang 1991 local correlation func-
tionals, and the Perdew 1986, GGA-II and LYP non-local correlation functionals. We first
tried to optimize only the o, B, and y parameters described in Section E.1, leaving out the




Slater exchange functional term (and including all of the K, ;GVB exact exchange), and
parametrizing for various combinations of one local and one non-local correlation functional.
The resultant RMS errors were reasonable, but somewhat disappointing, ranging from 15-20
kcal/mol depending on the functional choices.

Noting that the large RMS error of 53.4 kcal/mol for the GVB-only calculations might
indicate problems with the GVB reference wavefunctions, we next allowed a non-zero contri-
bution for the Slater exchange, subtracting off a corresponding amount of the exact exchange.
The intra-pair term was still allowed to vary independently. The total GVB-DFT energy was
thus taken to be

GVB-DFT GVB GVB Slater GVB
E = EC(mImnh + C.\‘Ekmf + ( I- C,\‘) E.\‘ [p (wg\'b) ] + aEiIIII‘(I—p(IiI‘
NLDA LDA
+BE, T [P (W) VP (W ) ) T +ETT[p (W) ]
NLDA
+XET P (W), VP (Y, )] '

where we constrained all four parameters (c.. 0. 5, and y) to be between zero and one. The
RMS errors improved dramatically for all hybridization schemes examined, as shown in
Table 7.

Post-SCF DFT on GVB density
Pure SCF
Single functional Parametrized combination of functionals
— -
o L]

2 28 |2 |2 |5 | &
=15z =« |5 S |£|8 |3 g|g ¢
&) ] > - 5 V] § I < % Z =

& 8 = = z I~ = =
> A = = > A
> &
RMS Error: | 534 | 35 | 27.8 | 23.7 | 225 | 19.8 | 495 | 5.00 | 457 | 4.66 | 443 | 4.46

Table 7: RMS errors in kcal/mol for atomization energy calculations for 44 molecules using
various SCF and post-SCF DFT methods. Coefficients used for parametrized combinations of
functionals are shown in Table 8.

The optimized parameters for the various hybrid functionals, shown in Table 8, show a
number of notable trends. The o and ¢ coefficients for the GVB mean-field exchange and
intra-pair terms are quite similar for each individual method, as seen also in the conforma-
tional energy difference study; this may indicate that our current separation of these compo-
nents has not yet isolated two physically distinct contributions to the total GVB exchange-
correlation energy. Unlike the conformational energy study, here a large proportion of the
Slater exchange energy was required to achieve best results, which previously were only
comparable to that in the standard B3LYP parameterization. (We note that Becke’s three-
parameter method was optimized to produce good atomization energies using molecules from
this same data set, which probably explains why its performance was fairly bad for the confor-
mational energies we considered yet quite good for these atomization energies. )
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B3LYP VWN/ | PWI1/ VWN/ PW91/ VWN/ PWI1/

P86 P86 GGAlIlc GGAllc LYP LYP

C, 0.20 0.16 0.18 0.23 0.22 0.30 0.30

o 0.20 0.18 0.19 0.24 0.24 0.31 0.36

B 0.72 0.30 0.20 0.31 0.20 0.24 .22

X% 0.81 0.00 0.00 0.29 0.20 0.73 1.00
RMS Error 19.8 4.96 5.00 4.57 4.66 4.43 4.46
MA Error 17.5 4.06 4.11 3.36 3.73 3.45 3.36

Table 8: Parameters fitted for various combinations of functionals for post-SCF DFT
calculations, and the resultant RMS and mean absolute errors (in kcal/mol) for atomization
energy calculations. Parameters are described in the text.

With the Phase I implementation of a self-interaction-corrected VWN local correlation
functional, as described in Section D, we reevaluated atomization energies for a smaller set of
16 of the G2 molecules that contained only hydrogen, carbon, nitrogen, and oxygen. For these
calculations, we also included GVB lone pairs as well as GVB bond pairs. Table 9 shows that

DFT DF DFT
SCF : T , mean | pms
wavefunction correlation exchange hybrid || absolute error
functional(s) functional(s) method error
% GVB none none none 62.9 66.4
A
N
E SCF B3LYP VWN /LYP Slater / Becke B3LYP 1.4 2.0
t GVB VWN (SIC) only none none 14.2 19.0
Q
§ GVB VWN (SIC)/ LYP Slater / Becke B3LYP 20.2 21.9
B
< GVB VWN (SIC)/LYP Slater / Becke new (SIC) 1.3 1.8

Table 9: Full comparison of mean absolute and RMS errors (in kcal/mol) for atomization energy
calculations on 16 molecules from the G2 data set using various methods, where the VWN local
correlation functional was self-interaction-corrected (SIC) where indicated. All post-SCF DFT
calculations used the self-consistent GVB density, as indicated. New parameters used for last

calculation listed were ¢, =0.12, 0=0.25, f=0.42, and ¥ =0.08, where these parameters are as
described earlier.

B3LYP performs particularly well for these molecules, while GVB’s performance is not espe-
cially good; nevertheless, the highest accuracy obtained is for a post-SCF DFT treatment of

the GVB density, even for this preliminary, non-self-consistent version of the method, an
extremely encouraging result.




We are confident that our Phase II improvements, which will include modification of
the GVB reference wavefunction, further development of the self-interaction-correcting DFT
functional code, and, especially, full implementation and parametrization of self-consistent
GVB-DFT computations, will reduce errors still further. We found that the self-consistent HF-
B3LYP mean absolute error for these atomization energy calculations is about half that
resulting from a post-SCF B3LYP treatment of HF wavefunctions, demonstrating the impor-
tance of a self-consistent treatment.

F. Self-Consistent GVB-DFT: Theory and Preliminary Results

In order to efficiently optimize accurate molecular structures with the GVB-DFT and
GVB-RCI-DFT methods, and to calculate wavefunction-dependent properties such as multi-
pole moments, polarizabilities. hyperpolarizabilities, it is necessary that the wavefunction be
calculated self-consistently.

Although we originally planned to implement a self-consistent GVB-DFT method
only during Phase II, our progress in Phase I encouraged us to investigate the advantages of a
completely self-consistent treatment as soon as possible. Therefore, we have completed a
preliminary version of this software, specialized to closed-shell systems and “exact-
exchange” methods, in which the DFT exchange-correlation functional is used in the refine-
ment of the GVB orbitals and CI coefficients. To our knowledge, this is the only existing soft-
ware with this capability.

In a GVB wavefunction, each GVB electron pair, p, is described by a pair of natural
orbitals y,, and Yy, and their CI coefficients, C,,, and C,,, (where Clzm + C,%b = 1). To opti-
mize the GVB wavefunction, a separate Fock matrix is defined for the core (non-GVB)
orbitals and for each GVB natural orbital and open-shell orbital [20]. The addition of the DFT
exchange-correlation energy to the GVB energy expression modifies the normal GVB Fock
matrices by adding the DFT exchange-correlation potential to each Fock matrix; the Fock

matrix, F, for orbital i is

Ve

GVB-DFT GVB .
) =F C+fV,

i !

F

where f; is the occupation of the orbital i (f; = C;* for GVB natural orbital V) and V* is the
DFT exchange-correlation potential.

The CI coefficients are optimized at each iteration to minimize the total energy of the
wavefunction. Normally this can be done by solving a simple quadratic equation for the coef-
ficients for each GVB pair in turn, and iterating over the complete set of GVB pairs until self-
consistency is reached. When the complete GVB two-electron energy is included in the GVB-
DFT energy, the equations for the CI coefficients are only slightly modified in the presence of
the DFT exchange-correlation terms. When the GVB exchange energy is scaled, however, as
in a hybrid method such as B3LYP, a fourth-order equation must be solved for the CI coeffi-
cients for each pair. This equation and its component terms take the form
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Here, x 1s a coefficient that scales the GVB exchange energy (both Kmf and K ‘,b) similar
equations are obtained when the mean-field and intra-pair energies are scaled mdependently
For x=1, the “exact exchange” limit, the Z terms vanish and the usual quadratic equation for o
is obtained. For x=0, both Kmf and K, are completely removed and the GVB wavefunction
collapses to a single Slater determmant because the DFT exchange-correlation energy does
not provide the intra-pair interactions required to stabilize a multi-configuration wavefunc-
tion. Therefore, any hybrid functional defined for use in a self-consistent GVB-DFT theory
must retain some amount of the GVB intra-pair exchange interaction, or it reduces to a canon-

ical DFT theory.

Solution of these equations is straightforward, and may be simplified by using the root
of the corresponding quadratic equation as an initial guess. These equations also make it clear
that if the intra-pair energy, K vl 1s completely scaled away, then the only the lower-energy
natural orbital in each pair is populated and the GVB wavefunction collapses to a single-deter-

minant HF wavefunction.

The extension of these equations to open-shell systems is easily done. Open shell
systems are treated in DFT theory analogously to the unrestricted Hartree-Fock method, with
separate exchange-correlation potentials V,, and V;* for the alpha and beta spin-orbitals. To
use these terms in the context of the explicitly restricted GVB theory, we will employ the stan-
dard relat1onsh1ps to recombine them into restricted core and open-shell potentials, V'
and V|

open ?

closed

¢ l VS AV AV 1 e
V(Iu.\‘ezl = 5( V(x + VB ) . vn/wn = EV(X
V:]med is then used in the Fock matrices for the core and GVB pair orbitals, while V' s

open

used for the open-shell Fock matrix.

We have implemented the self-consistent GVB-DFT theory described above for
closed-shell systems and “exact exchange” methods and have obtained encouraging results
for the handful of cases that we have examined. Convergence of the hybrid GVB-DFT wave-




function to self-consistency appears to be reliable using the standard GVB-DIIS [3] and
OCBSE [20] convergence schemes available in PS-GVB, both when starting from PS-GVB’s
default GVB initial guess and when starting from a converged GVB wavefunction.

Table 10 and Table 11 show preliminary results from three systems in our conforma-
tional energy database. In these systems there is little additional lowering of the total GVB-
DFT energy, when compared with the non-self-consistent post-SCF DFT treatment, and no
impact on the accuracy of the conformational energy differences. When the open-shell version

formic acid 1-butene isoprene
Method (c) (t) (s) (c) (® (t)
GVB -188.974709 | -188.967843 |1 -156.346391 | -156.344988 || -194.236185 | -194.238324

Post-SCF DFT ||-191.070371 | -191.063307 || -158.945255 | -158.944344 || -197.346524 | -197.348978

SCF GVB-DFT ||-191.070934 | -191.063888 || -158.947068 | -158.946146 || -197.348647 | -197.351088

Table 10: Conformational energies in atomic units for three representative systems, using GVB,
GVB-DFT with a post-SCF DFT treatment, and our preliminary self-consistent GVB-DFT
software.

Method formic acid | 1-butene | isoprene
GVB 4.31 0.88 1.34
Post-SCF DFT 4.43 0.57 1.54
SCF GVB-DFT 4.42 0.58 1.53
Exp. Value 3.90 0.53 2.65

Table 11: Conformational energy differences in kcal/mol for three representative systems, using
GVB, GVB-DFT with a post-SCF DFT treatment, and our preliminary self-consistent GVB-
DFT software.

of this code becomes available, we will be able to calculate atomization and bond dissociation
energies, in which the impact of a fully self-consistent treatment should be greater (for
instance, the RMS error for the atomization energies of the G2 database molecules is halved
for the standard B3LYP functional when it is applied self-consistently versus as a post-SCF
method).

These preliminary results are encouraging because they suggest that, for at least some
molecular properties, almost all of the accuracy of the GVB-DFT theory can be obtained by
an inexpensive post-SCF DFT treatment. Also, when a self-consistent calculation is required.
as for the calculation of analytic gradients, it should be possible to devise a more efficient self-
consistent procedure by incorporating the DFT exchange-correlation potential in the SCF
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equations only after the orbitals have been largely converged by the faster standard GVB
method.

In Phase II, we will complete the development of the SCF-GVB-DFT software
described here by extending it to open-shell systems and mixed “exact exchange”/DFT
methods. This will be the basis for implementing analytic gradients for the GVB-DFT wave-
function, allowing optimization of equilibrium geometries and transition states at this level of
theory. Existing molecular properties methods currently available for standard GVB wave-
functions will be extended to GVB-DFT wavefunctions as well.
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